13 research outputs found

    Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation

    Get PDF
    BACKGROUND: There is a need to improve semi-autonomous stroke therapy in home environments often characterized by low supervision of clinical experts and low extrinsic motivation. Our distributed device approach to this problem consists of an integrated suite of low-cost robotic/computer-assistive technologies driven by a novel universal access software framework called UniTherapy. Our design strategy for personalizing the therapy, providing extrinsic motivation and outcome assessment is presented and evaluated. METHODS: Three studies were conducted to evaluate the potential of the suite. A conventional force-reflecting joystick, a modified joystick therapy platform (TheraJoy), and a steering wheel platform (TheraDrive) were tested separately with the UniTherapy software. Stroke subjects with hemiparesis and able-bodied subjects completed tracking activities with the devices in different positions. We quantify motor performance across subject groups and across device platforms and muscle activation across devices at two positions in the arm workspace. RESULTS: Trends in the assessment metrics were consistent across devices with able-bodied and high functioning strokes subjects being significantly more accurate and quicker in their motor performance than low functioning subjects. Muscle activation patterns were different for shoulder and elbow across different devices and locations. CONCLUSION: The Robot/CAMR suite has potential for stroke rehabilitation. By manipulating hardware and software variables, we can create personalized therapy environments that engage patients, address their therapy need, and track their progress. A larger longitudinal study is still needed to evaluate these systems in under-supervised environments such as the home

    Repair of Parastomal Hernias with Biologic Grafts: A Systematic Review

    Get PDF
    Contains fulltext : 98303.pdf (publisher's version ) (Open Access)BACKGROUND: Biologic grafts are increasingly used instead of synthetic mesh for parastomal hernia repair due to concerns of synthetic mesh-related complications. This systematic review was designed to evaluate the use of these collagen-based scaffolds for the repair of parastomal hernias. METHODS: Studies were retrieved after searching the electronic databases MEDLINE, EMBASE and Cochrane CENTRAL. The search terms 'paracolostomy', 'paraileostomy', 'parastomal', 'colostomy', 'ileostomy', 'hernia', 'defect', 'closure', 'repair' and 'reconstruction' were used. Selection of studies and assessment of methodological quality were performed with a modified MINORS index. All reports on repair of parastomal hernias using a collagen-based biologic scaffold to reinforce or bridge the defect were included. Outcomes were recurrence rate, mortality and morbidity. RESULTS: Four retrospective studies with a combined enrolment of 57 patients were included. Recurrence occurred in 15.7% (95% confidence interval [CI] 7.8-25.9) of patients and wound-related complications in 26.2% (95% CI 14.7-39.5). No mortality or graft infections were reported. CONCLUSIONS: The use of reinforcing or bridging biologic grafts during parastomal hernia repair results in acceptable rates of recurrence and complications. However, given the similar rates of recurrence and complications achieved using synthetic mesh in this scenario, the evidence does not support use of biologic grafts

    Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: Implications for modelling trajectories for robot-assisted ADL tasks**

    Get PDF
    BACKGROUND: Robotic therapy is at the forefront of stroke rehabilitation. The Activities of Daily Living Exercise Robot (ADLER) was developed to improve carryover of gains after training by combining the benefits of Activities of Daily Living (ADL) training (motivation and functional task practice with real objects), with the benefits of robot mediated therapy (repeatability and reliability). In combining these two therapy techniques, we seek to develop a new model for trajectory generation that will support functional movements to real objects during robot training. We studied natural movements to real objects and report on how initial reaching movements are affected by real objects and how these movements deviate from the straight line paths predicted by the minimum jerk model, typically used to generate trajectories in robot training environments. We highlight key issues that to be considered in modelling natural trajectories. METHODS: Movement data was collected as eight normal subjects completed ADLs such as drinking and eating. Three conditions were considered: object absent, imagined, and present. This data was compared to predicted trajectories generated from implementing the minimum jerk model. The deviations in both the plane of the table (XY) and the saggital plane of torso (XZ) were examined for both reaches to a cup and to a spoon. Velocity profiles and curvature were also quantified for all trajectories. RESULTS: We hypothesized that movements performed with functional task constraints and objects would deviate from the minimum jerk trajectory model more than those performed under imaginary or object absent conditions. Trajectory deviations from the predicted minimum jerk model for these reaches were shown to depend on three variables: object presence, object orientation, and plane of movement. When subjects completed the cup reach their movements were more curved than for the spoon reach. The object present condition for the cup reach showed more curvature than in the object imagined and absent conditions. Curvature in the XZ plane of movement was greater than curvature in the XY plane for all movements. CONCLUSION: The implemented minimum jerk trajectory model was not adequate for generating functional trajectories for these ADLs. The deviations caused by object affordance and functional task constraints must be accounted for in order to allow subjects to perform functional task training in robotic therapy environments. The major differences that we have highlighted include trajectory dependence on: object presence, object orientation, and the plane of movement. With the ability to practice ADLs on the ADLER environment we hope to provide patients with a therapy paradigm that will produce optimal results and recovery

    Allgemeine Pathogenese der Viruskrankheiten des Zentralnervensystems

    No full text

    Conversion of levulinic acid to valuable chemicals: a review

    No full text
    Levulinic acid (LA), a class of important chemical intermediates and new energy chemicals, has been considered one of the top-12 platform compounds that can be converted from biomass resources. Substantial progress on the conversion of lignocellulose biomass to LA and the further conversion of LA to high value downstream chemicals have been achieved recently. This review summarizes the preparation and separation processes of LA firstly, and then, emphatically discusses the catalytic system for LA conversion to valuable downstream products, including levulinate esters, 2-methyl tetrahydrofuran (MTHF), Gamma-valerolactone (GVL), 5-aminolevulinic acid (DALA), and diphenolic acid (DPA). An outlook is provided at the end of this paper to highlight the challenges and opportunities for the comprehensive utilization of lignocellulose biomass. (c) 2021 Society of Chemical Industry (SCI)

    A RANDOMIZED TRIAL OF INTRAVENOUS HEPARIN IN CONJUNCTION WITH ANISTREPLASE (ANISOYLATED PLASMINOGEN STREPTOKINASE ACTIVATOR COMPLEX) IN ACUTE MYOCARDIAL-INFARCTION - THE DUKE-UNIVERSITY CLINICAL CARDIOLOGY STUDY (DUCCS) .1.

    No full text
    corecore